Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Editah Hadassa Abuto"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    FRAUD DETECTION IN BANKING USING MACHINE LEARNING
    (The European Academic Journal (EAJ), 2024-03-28) Jade Gesare Abuga; Editah Hadassa Abuto; Roy Kuria
    Financial institutions, particularly banks, have a challenge of fraud detection. Fraud poses a substantial financial risk to both institutions and their customers since fraudulent activities can result in significant monetary losses and erode customer trust. Recent research has shown that machine learning techniques can be used to detect fraud in the banking sector. In this project, we applied logistic regression, random forest, K-Nearest Neighbours, and decision trees to detect fraudulent transactions to the problem of fraud detection in the banking industry. The dataset was obtained from Kaggle and has 31 variables. Logistic regression had the lowest performance metrics with an accuracy of 87.91% while the decision tree had the highest performance metrics with an accuracy of 97.17%.

UEAB copyright © 2002-2025 IR

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback